Largest Eigenvalue of the Laplacian Matrix: Its Eigenspace and Transitive Orientations

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Largest Eigenvalue of the Laplacian Matrix: Its Eigenspace and Transitive Orientations

We study the eigenspace with largest eigenvalue of the Laplacian matrix of a simple graph. We find a surprising connection of this space with the theory of modular decomposition of Gallai, whereby eigenvectors can be used to discover modules. In the case of comparability graphs, eigenvectors are used to induce orientations of the graph, and the set of these induced orientations is shown to (rec...

متن کامل

Largest Eigenvalue of the Laplacian Matrix: Its Eigenspace and Transitive Orientations | SIAM Journal on Discrete Mathematics | Vol. 30, No. 4 | Society for Industrial and Applied Mathematics

We study the eigenspace with largest eigenvalue of the Laplacian matrix of a simple graph. We find a surprising connection of this space with the theory of modular decomposition of Gallai, whereby eigenvectors can be used to discover modules. In the case of comparability graphs, eigenvectors are used to induce orientations of the graph, and the set of these induced orientations is shown to (rec...

متن کامل

Graphs with small second largest Laplacian eigenvalue

Let L(G) be the Laplacian matrix of G. In this paper, we characterize all of the connected graphs with second largest Laplacian eigenvalue no more than l; where l . = 3.2470 is the largest root of the equation μ3 − 5μ2 + 6μ − 1 = 0. Moreover, this result is used to characterize all connected graphs with second largest Laplacian eigenvalue no more than three. © 2013 Elsevier Ltd. All rights rese...

متن کامل

Bounds for the Largest Laplacian Eigenvalue of Weighted Graphs

Let G = (V, E) be simple graphs, as graphs which have no loops or parallel edges such that V is a finite set of vertices and E is a set of edges. A weighted graph is a graph each edge of which has been assigned to a square matrix called the weight of the edge. All the weightmatrices are assumed to be of same order and to be positive matrix. In this paper, by “weighted graph” we mean “a weighted...

متن کامل

A New Upper Bound on the Largest Normalized Laplacian Eigenvalue

Abstract. Let G be a simple undirected connected graph on n vertices. Suppose that the vertices of G are labelled 1,2, . . . ,n. Let di be the degree of the vertex i. The Randić matrix of G , denoted by R, is the n× n matrix whose (i, j)−entry is 1 √ did j if the vertices i and j are adjacent and 0 otherwise. The normalized Laplacian matrix of G is L = I−R, where I is the n× n identity matrix. ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: SIAM Journal on Discrete Mathematics

سال: 2016

ISSN: 0895-4801,1095-7146

DOI: 10.1137/15m1008737